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Abstract. In this article we describe the implementation of Freeform Optics Raytracer with Manufacturable
Imaging Design cApaBiLitiEs (FORMIDABLE): an optical design library capable of simulating optical systems
by ray-tracing. Optical performance can be quantified and optimised using third-party optimisation algorithms.
Compared to available commercial optical design and similarly to fast accurate NURBS optimization (FANO),
our code can simulate and optimise Non-uniform rational B-Spline (NURBS). It also implements generalized
differential capabilities that allows faster convergence compared to state-of-the-art. The implementation of
FORMIDABLE and its innovative capabilities are described and illustrated with a representative case-study.
The source code is available to eligible third-parties under the ECSL licence.
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1 Introduction

An optical design problem consists of finding an appropri-
ate combination of optical surfaces, reflective or refractive,
and of refractive materials which will allow an optical
instrument to perform a specified function.

The quality of the imaging function can be quantified
with various metrics, wavefront error for diffraction limited
systems, geometric spot radius for aberration limited ones,
and modulation transfer function that can be computed
for both. Distortion and transmission are also criterion of
importance as are practical constraints such as volume,
weight, cost etc.

An appropriate solution is a compromise between these
aforementioned metrics and will be found by adjusting the
degrees of freedom of the system. Adjusting a degree of free-
dom will for example modify the shape of an optical surface
or its position.

To accomplish this task, designers leverages computed-
aided design software which rely partly on non-linear
numerical optimisation where the fitness of the system is
encoded in a scalar function of the degrees of freedom. Opti-
misation algorithms are then used to find a minimum from
a starting point supplied by the designer.

It is increasingly common to rely on surfaces that have
no axial symmetry, usually referred to as freeform surfaces
[1], to add degrees of freedom. Adding extra degrees of free-
dom allow finding solutions to an optical design problem
that can outperform previous solutions on most metrics,
though usually not on all since freeform systems are often
more costly [2].

The choice of description of freeform surfaces has been
the subject of a vigorous debate, Zernike polynomials being
often the favored choice [3]. On the other hand, Chrisp [4]
have pionered Non-uniform rational B-splines in optical
design of imaging systems and have shown advantages com-
pared to other descriptions.

The advantages of NURBS comes from local control.
Indeed, NURBS surfaces are controlled by a grid of control
points together with their weights. Each control point influ-
ences the surface in only a limited region. However, to
succesfully optimise NURBS, a custom optical design soft-
ware is required as commercial optical design codes empiri-
cally show poor performances with NURBS potentially
because they require many degrees of freedom [4]. Fast
accurate NURBS optimization (FANO) [5] is an example
of such a software.

In the following article we describe our code Freeform
Optics Raytracer with Manufacturable Imaging Design
cApaBiLitiEs (FORMIDABLE) that also allows design of
optical surfaces described as NURBS in optical systems.* Corresponding author: jbv@pm.me
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Compared to FANO, FORMIDABLE also implements the
following functionalities: differential ray tracing [6] which
greatly speeds up optimisation of problems with large num-
ber of degrees of freedom, and ray-aiming, which allows to
optimise system with a physical pupil defined on one of the
intermediate surfaces. In the case of ray-aiming, it is unclear
to us if FANO implements it, one example [7] does have the
physical stop defined on surface 2, which would require ray-
aiming though most of the examples have the physical stop
on the first surface.

Another objective of FORMIDABLE was to use its
NURBS capabilities to simulate the impact of structural
deformation on optical performance, as NURBS are a
standard widely used in mechanical Computed-aided soft-
ware (CAD) software hence the acronym Freeform
Optics Raytracer with Manufacturable Imaging Design
cApaBiLitiEs (FORMIDABLE).

In the following sections we will first introduce the con-
cept of differential ray tracing and its implementation. We
will then describe the challenges FORMIDABLE overcome
in order to optimise a NURBS based system in the context
of a case-study. Finally we will describe the architecture of
FORMIDABLE.

2 Differential ray tracing

Differential ray tracing consist into simultaneously comput-
ing a ray trace and its derivatives.

We define a ray as a curve perpendicular to a wavefront
of light. In this article we only consider mediums of homoge-
nous refractive index separated by optical surfaces, so rays
can be described by a line.

Mathematically we represent a ray by a point p and a
normalized direction vector direction k.

At each optical surface, the ray will either be refracted
or reflected to a new ray. We call this sequence of rays
the ray path.

In the context of optical ray tracing we are only inter-
ested in ray paths that originates from a point in the field
of view and are not vignetted by the pupil of our instrument.

We call the phase space the combination of the field
point, the pupil, and the wavelength define the ray tracing
function in equation (1) as the function that associates a ray
path / to phase a point in the phase space and s an optical
system.

We note h the part of / that denotes the field point,
r the part that denotes the pupil point, and k wavelength
the wavelength.

raytraceð/; sÞ ¼ w: ð1Þ
In equation (1), s is the optical system in consideration, in
concrete terms it is a vector of what might vary in an opti-
cal system (curvatures, element position etc.), or as refered
earlier the degrees of freedom of the optical design problem.

The right hand side of equation (1), w is the ray path of
the system which can be represented as the sequence of rays
ffp1; k1gg; . . . ; fpN ; kNgg .

But we will often prefer a more compact representations
eliminating redundant information, either the sequence of

intersection points fp1; . . . ;pNg (ki are ommited as redun-
dant) or the sequence fu1; . . . ;uNg where ui is the argu-
ment of pi with respect to the surface function.

Indeed, we limit ourselves to the design of optical sur-
faces that can be represented parametrically, so for each
optical surfaces it exists a function associating a point in
three-dimensional space p to a point in two-dimensional
parameter space u (Eq. (2)),

u 2 R2 7! p 2 R3: ð2Þ
To compute the derivative of equation (1) in the general
case we need a mathematical framework that allows to dif-
ferentiate functions that do not necessarily have an analyt-
ical expression. The framework was introduced in literature
[6] and is described here in updated terms.

2.1 Implicit differentiation

Given y and x two vector variables such that there is a
function mapping x to y but without access to the analytic
expression of such function.

What we do have is the analytic expression of f that
satisfies f(x,y) = 0.

Knowing x it is possible to compute y by solving f
with an algorithm such as Newton’s descent, but how to

compute the jacobian matrix
@y
@x

?

To do so, we first introduce two differential operators:
the partial differential operator @ � =@� and the total differ-
ential operator d�/d�.

The total differential operator applied to f takes into
account the fact that y depends on x and can be expressed
as a linear combination of partial differential operators
that neglect cross terms by applying the chain rules as in
equation (3).

df
dx

¼ @f
@y

@y
@x

þ @f
@x

¼ 0: ð3Þ

Since we have the analytic expression of f, if it is differen-
tiable we obtain the jacobian matrix @y

@x by solving the linear
system. Of course equation (4) implies that f and y have the
same dimensionality.

@y
@x

¼ @f
@y

�1 @f
@x

: ð4Þ

We can apply the implicit differentiation technique to the
intersection calculation of a ray and a surface.

For surfaces that can be described as quadrics (such as
spheres, conics etc.) the intersection calculation accepts a
closed form solution therefore differentiation is trivial.

For intersection of a ray with a NURBS we use an
iterative algorithm [8] which searches for the zero of a
two-dimensional error function.

We can therefore differentiate u using the implicit func-
tion theorem applied to this two-dimensional intersection
error function.

To further compute the derivatives of w from the
derivatives of u we use the method that we introduce in
Section 2.3.
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In the following section, we describe another method
implemented in FORMIDABLE, implicit differentiation
using Fermat path principle that allows to differentiate
directly a ray path.

Whether differentiating using the fermat error function
or using the intersection error function will come down to
computation time, typically intersection method are more
efficient when more surfaces are considered.

2.2 Fermat path principle

We recall that the Fermat path principle states that rays
travel along a stationary path throughout the system. Let
L be the optical path throughout an optical system and
ni;iþ1 the refractive index between surface i and i þ 1 and
pipiþ1k k is the Euclidean distance between pi and pi+1.

L ¼
XN

i¼0

ni;iþ1 pipiþ1k k: ð5Þ

As a consequence of Fermat’s path principle we have:

@L
@w

¼ 0: ð6Þ

Let pi ¼ ðxi; yi; ziÞ, we define in equation (7), the vector F
composed of the numerators of the @L=@w terms.

F i ¼ j pi�1pij jjðxi � xiþ1Þ þ jjpipiþ1jjðxi � xi�1Þð Þ @xi
@wi

þ j pi�1pij jjðyi � yiþ1Þ þ jjpipiþ1jjðyi � yi�1Þ
� � @yi

@wi

þ j pi�1pij jjðzi � ziþ1Þ þ jjpipiþ1jjðzi � zi�1Þð Þ @zi
@wi

F ¼ ðF1; . . . ;F i; . . . ;FN�1Þg:
ð7Þ

We call F the offence against Fermat path principle. F
must be equal to 0 given equation (6) for the ray path to
be physical.

We note that there the dimensionality of F is equal to
the dimensionality of w.

Therefore, we can apply the implicit differentiation
technique to F to differentiate w with respect to / or s
(Eq. (8)).

@w
@/

¼ @F�1

@w
@F
@/

; ð8Þ

@w
@s

¼ @F�1

@w
@F
@s

: ð9Þ

The term @F
@w represents the sensitivity of the offence against

fermat path principle to small errors in the ray path. This
term can be computed analytically if the curvatures of
the optical surfaces can be computed analytically.

The term @F
@/

represents the sensitivity of the offence
against fermat path principle to small changes in the field
or the pupil coordinate of the ray.

The term @F
@s represents the sensitivity of the offence

against fermat path principle to small changes in the geom-
etry of the system. To be computed it will require that the
optical surfaces are differentiable with respect to the vari-
able parameters of the optical system. For example, if the
optical system has a spherical optical surface with a vari-
able curvature, it is possible to differentiate a point on
the surface with respect to the curvature and therefore it
is possible to compute analytically @F

@s .
In most cases the three terms above will be computable

analytically and therefore the ray tracing will be
differentiable.

2.3 Differentiating merit functions

In the previous section we have described how to differenti-
ate a ray tracing.

However, merit functions are typically calculated from
the results of multiple operations applied on multiple ray
traces.

We will assume that merit functions are composed of
operations that are all differentiable, but that are too com-
plex for hand-derivation of derivatives to be practical.

In this case, automatic differentiation (AD) is the tool of
choice [9]. It is one of the main algorithms behind the pro-
gresses of deep learning the recent years. In the following
section we will illustrate the concepts behind AD.

Let us first assume that our merit function can be
described as an expression which can be put in the form
of a directed acyclic graph (DAG). In Figure 1 such a
DAG is represented for the calculation of the spherical
sag. The sub-expression that is reused corresponds to the
expression of r2 ¼ x2 þ y2.

The DAG can be converted into a list of elementary
operations that a computer will perform in sequence to
compute the expression. In the first column of Table 1 each
intermediary calculation is denoted by an intermediary
variable ai with a12 corresponding to the result of our
computation.

All elementary operations of Table 1 can be differenti-
ated. AD assumes that the computer has a database of dif-
ferentiation rules for each elementary steps.

There are two modes to aggregate the results of elemen-
tary rules into a program, the forward mode and the reverse
mode [9]. FORMIDABLE uses the forward mode that we
introduce next.

In parallel of the computation of Table 1 we will also
perform the calculation of its derivative. We introduce the
notation:

@a
@x

¼ _a:

The second column of Table 1 introduces the calculations of
the derivative.

The main advantage compared to the tree approach
introduced earlier is that each operation can be done in
sequence, forwarding the results of the differentiation to
the final result.

The disadvantage is that it requires to set the value of _x,
_y and _c. These values are called the seeds and will be set for

J. Eur. Opt. Society-Rapid Publ. 20, 2 (2024) 3



example to _x ¼ 1, _y ¼ 0 and _c ¼ 0 to compute the deriva-
tives with respect to x.

So if we want to compute all three derivatives (because
we have three inputs) we would have to repeat the compu-
tation 3 times with different seed values.

However if our calculation had multiple outputs, (more
than one root in the DAG illustrated in Fig. 1) we would
only have to perform the calculation once to have the
derivatives of all the outputs with respect to one input.

This is one key property of forward mode differentia-
tion, it is efficient for many outputs with few inputs, so it
is well suited for ray-tracing as we will have typically more
rays than degrees of freedom.

There are many different strategies to implement AD
we will focus on the concepts behind the library For-

wardDiff.jl [10] which FORMIDABLE is built upon.
This library is implemented in the Julia [11] program-

ming language as is the core of FORMIDABLE.

In Figure 1, leaf nodes represent inputs and constant
values, while the other nodes are operations.

For example multiply denotes the application of the
multiplication operator to the inputs.

The idea behind ForwardDiff.jl implementation is
to change the implementation of the operations in a way
that allows the computation of the derivative.

For that ForwardDiff.jl uses Dual numbers. They
bundle in the same variable a value (called primal value)
and its derivatives.

Dual numbers can then be used to compute derivatives
in the forward mode For example in Table 1 dual numbers
would represent an entire row of the table ðai; _aiÞ.

Then operators like the multiplication operator are re-
defined to operate on dual numbers.

For example, the multiplication operator would be
defined as in equation (10).

a; _að Þ; b; _b
� �� � 7! ab; _abþ a _b

� �
: ð10Þ

In terms of implementation, the library ForwardDiff.jl

uses Julia multiple dispatch to call the correct function.
This is also made possible, because Julia is a functional

language meaning that multiplication is implemented with
conventional functions that can be extended by the user.

We conclude this section by noting that we have shown
how AD can be used to differentiate complex programs as
long as the elementary functions that compose this program
have known differentiation rules.

Since we have also defined the differentiation rule for
ray-tracing we now have all the components required to
implement a generalized differential ray-tracer which we
will describe in the next section.

3 Case study

The case study we chose to test FORMIDABLE and
uncover potential limitations is inspired from the literature
[7]. Primary properties are in Table 2.

Figure 1. Directed acyclic graph for the calculation of the
sphere sag.

Table 1. Operations to compute simulatenously sag and
derivative in forward mode.

i ai _ai
0 y _y
1 c _c
2 x _x
3 a22 2 _a2a2
4 a20 2 _a0a0
5 a21 2 _a1a1
6 a3 þ a4 _a3 þ _a4
7 �a5a6 � _a5a6 � _a6a5
8 a7 þ 1 _a7
9

ffiffiffiffiffi
a8

p _a8
2
ffiffiffiffi
a8

p
10 a9 þ 1 _a9
11 1

a10
� _a10

a210
12 a1a11a6 _a11a1a6 þ _a1a11a6 þ _a6a1a11
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In the remaining of the section we will first focus on
three difficulties that were encountered: definition of aper-
ture on NURBS surfaces, ray-aiming, NURBS and the
choice of the optimisation algorithm, before presenting
the results.

3.1 Projected aperture

Optical design software usually only consider surfaces that
can be defined as sag surfaces.

A sag surface defines a point in a local coordinate sys-
tem as in equation (11).

P ¼ x; y; sag x; yð Þð Þ: ð11Þ
NURBS surfaces are of a more general form described in
equation (12).

P ¼ x u; vð Þ; y u; vð Þ; z u; vð Þð Þ: ð12Þ
In the case of a sag surfaces, we can define an aperture A as
a function of x and y which are projection of P on a refer-
ence plane as in Figure 2.

For example for a centered circular aperture A would be
defined as in equation (13).

A ¼ R2 � x2 � y2: ð13Þ
In equation (13) R defines the radius of the aperture and A
is negative if the ray is blocked by the aperture.

In the case of a NURBS u and v do not correspond to a
projection on a plane. Often they do not even correspond to
physical quantities as they are normalized between 0 and 1.

ProjectedAperture allows bypassing this problem
by defining an, aperture plane independent of the surface
definition (see Fig. 3) and adds the following fields:

� aperture: a “classical” aperture,
� a: tangent vector of the aperture plane,
� b: tangent vector of the aperture plane (2nd direction),
� p: offset point, moves the coordinate system of the
aperture plane.

A projected aperture will then project the intersection point
onto the aperture plane plane, and apply the aperture on
this plane. This allows to completely decouple the surface
definition from the aperture definition.

3.2 Ray-aiming

The first preliminary tests of optimisation showed that it is
critical to eliminate as much as possible discontinuities in
the merit function. Some discontinuities are unavoidable,
when the optimizer tries to evaluate the merit function
for an unphysical system (impossibly large curvature for
example). Some discontinuities are due to a Formidable
calculation artifacts and are a false positive to be avoided.

False positives were found to come from ray-aiming and
from the definition of the physical pupil shape.

Ray-aiming is particularly difficult in off-axis systems
because it is difficult to locate the image of the physical
pupil in the object space.

A simple ray-aiming implementation can be done
naively by an optimisation whose guess was that the ray
would originate from the center of the first surface (Fig. 4).

This could fail in two ways (in red in Fig. 4):

� Either because the guess provided was too far from
the minima, so it would not converge.

� Or because they were multiple ray-aiming solutions.

Figure 2. A ray vignetted by an aperture on a surface defined
by a sag function.

Figure 3. A ray vignetted by an aperture on a generic surface.
The aperture plane is defined independantly using a and b
vectors (offset point omitted).

Table 2. Case study primary properties.

Focal length 357 mm
Field of view ±5 � ±4.5�
Entrance pupil diameter 180 mm
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The first case requires a better guess than the center of the
first surface, the second case is harder to solve, and can typ-
ically happen where there is a reflection at a very shallow
angle that manages to intersect the pupil at the correct
location.

We solved the ray-aiming problem by an algorithm in
three parts.

The first part deals with finding the On-axis Chief Ray
(OAR) that is the chief ray of the center field.

Since this search is done relatively rarely we invest a sig-
nificant amount of computational resources to ensure that
the correct OAR is found.

This is done in the following steps:

� Tracing in reverse from the center of the pupil, we
scan the full sphere of incidence angle to search for
directions that trace back to the entrance. We obtain
reverse OAR candidates that intersect the pupil at the
correct location but do not originate from the correct
field points.

� Tracing in the direct direction and using as a guess the
intersection of the OAR candidates with the first sur-
face we adjust this intersection to find direct OAR
candidates that intersect the pupil at the correct loca-
tion and come from the correct field points. We obtain
less direct OAR candidates than reverse OAR candi-
date because the adjustment is not always successful.
Furthermore, most of the direct OAR candidates con-
verge to the same ray-aiming solution.

� We eliminate non-physical rays that is rays
whose direction is sometime opposite the physical

propagation of light. To allow tracing to virtual
surfaces, (exit pupil for example) we disregard this
rule when the direction violation occurs before or after
a dummy surface.

� If there is still multiple candidates we select the one
that has paraxial derivatives that come closer to an
imaging function.

This process is depicted in Figure 5. If the system is axial
symmetric, this procedure can be disabled.

Now that we have an OAR we can compute the physi-
cal pupil shape. For this we trace a sample of rays along
the edge of the target pupil shape in the object space to
the physical pupil and we fit the physical pupil to this
sample.

This is done with typically 100 rays, much more than
what optical design software will typically do. This large
number avoids a situation where a couple of NURBS con-
trol points could be used by the optimizer to artificially
reduce the pupil size.

Once we have the physical pupil shape determined we
can compute a raymap.

We progressively fill a hyper cube sampling field, pupil
and wavelength of rays. Each ray is traced using the closest
ray already traced as a guess back to the OAR, ensuring
continuity of the ray map.

If the sampling is sufficiently dense, the expensive proce-
dure for the OAR does not need to be repeated for each ray.

Once the raymap is filled, each ray trace will first look in
the raymap for the closest ray that has been traced and use

Figure 4. First naive algorithm for ray aiming.
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it as a guess. This ensures very robust ray-aiming and is also
a speed improvement.

3.3 Optimisation

Testing showed that the Levenberg–Marquardt algorithm
(also known as damped-least squares) has remarkably good
performance on optical problems.

Since we are using forward-mode differentiation, we get
the jacobian matrix for free, which would not be the case in
reverse-mode differentiation.

Typical optical merit function try to minimize the quad-
ratic sum of components that we will call residuals.

Levenberg–Marquadt tries to bring as close to zero as
possible the residuals. This should be completely equivalent
but as explained in literature [12] under the assumption
that this residuals will indeed come closer to zero it allows
Levenberg–Marquardt to behave like 2nd order derivative

information was provided. Of the open-source implementa-
tions available Levenberg–Marquardt implementation
available in SciPy [13] was found to be the most efficient
implementation in terms of speed of convergence and
quality of the solution found.

Therefore, the direction of descent chosen is usually
more efficient than just following the gradient of the merit
function.

With this observation, convergence was faster but the
final performance still disappointing. A more careful inves-
tigation showed that the jacobian matrix conditionning was
poor and the effective rank as calculated numerically was
deficient.

This was solved by first removing degrees of freedom
that were redundant. For example, the effect of decenters
of entire NURBS on the merit function was found numeri-
cally to be strongly correlated with the control points
displacement.

Figure 5. OAR determination.
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Lastly, the remaining problem was with control points
of the NURBS that were not contributing in the first order
of the merit function. This is typically control points outside
of the circular footprint because typical NURBS will have a
rectangular bounding curve.

We first tried to solve this problem by adding a penalty
either on the curvature of the NURBS (penalized to stay as
constant as possible) or on the departure from the starting
point. This was found to converge to poor results. What
was successful was to optimise using a rectangular pupil
shape to ensure that every grid point of the NURBS
contributes.

This requires each NURBS to be tailored to be just
slightly larger that its effective aperture before optimisa-
tion, except the pupil which needs a larger oversize due to
the way the physical stop is computed.

The cause of this problem is that we define NURBS
with a regular grid of points. To directly optimize circular
pupils and NURBS, it will be necessary to investigate opti-
misation of irregular grids in FORMIDABLE.

A system obtained with this method is depicted in
Figure 6, with its RMS spot radius field map depicted in
Figure 7. For comparison a system was design with the
same properties in CodeV using polynomials with inferior
performance as depecited in Figure 8.

4 Software architecture

4.1 The choice of Julia

Julia [11] is a high-performance language that aims at a
familiar syntax for users of Matlab [14] and Python [15].

It solves the two language problems encountered by
Python users when a language convenient to use (Python)
must be often supplemented by another language for the
performance demanding parts.

The two language problems has the following draw-
backs:

� Developer of the software need to be proficient in two
languages.

Figure 6. System with optimised NURBS.

Figure 7. RMS spot radius field map.
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� Users of such software also need to be learned in two
languages if they want to have a deep understanding
of the internal workings.

� External tools such as debuggers, profilers are difficult
to use.

Solving the two language problem is achieved by just-in-
time compilation. In a nutshell, when a Julia function is
called, Julia analyses the arguments type (e.g. float, integer
or more complex types) and compiles an optimised version
of this function (called a method) for this particular argu-
ment type combination (called a signature).

This strategy is also employed by Numba [16], a Python
library aimed at high performance.

It has the advantage that while Numba is limited to a
subset of Python functionalities in Julia no such limitations
exist.

Finally Julia has great interoperability with Python
[17], allowing Python users to use FORMIDABLE easily.

FORMIDABLE is divided in packages to simplify the
management of the third-party dependencies. It allows
the end-user to install only necessary packages without
many useless dependencies.

Therefore, functions and data structures are grouped
based on bringing-in similar dependencies as illustrated in
Figure 9.

Formidable.jl is the core packages including every-
thing relating to the raytrace of an optical system and the
definition of the optical system.

Figure 8. RMS spot radius field map.

Figure 9. Package hierarchy and main dependencies.
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It also includes dependencies required to perform the
differential ray-tracing.

All other packages depend on it.
FormidableViewer.jl includes the plotting func-

tions and depends on third party plotting libraries such as
Plots.jl [18] and MeshCat.jl [19] that we did not
want to add as dependencies to Formidable.jl core.

FormidableOptim.jl implements conversion utili-
ties to allow optimisation of optical merit functions with
third-party optimisation libraries.

FormidableOptim.jl only implements a bridge to
Nonconvex.jl [20] and to SciPy [21].

PyFormidable is a python package that implements
the bridge to python.

4.2 Numerical performance

FORMIDABLE has been developed not with the goal of
having the ultimate performance but with the goal of being
performant enough, comparable with performance indi-
cated in litterature [7].

On a CPU clocked at 2.2 FORMIDABLE is capable of
computing a ray, NURBS intersection in 0.6 ls.

Furthermore, in the merit function calculation, batch
ray tracing is parallelized on all available CPU threads.

Automatic differentiation brings advantages in perfor-
mance as well, the merit function of the case study presented
above is composed of 228 degrees of freedom and is evalu-
ated in 116 ms while its gradient takes 4.581 s to evaluate.

So the finite differentiation logically takes 2 � 228 �
116 ms = 52.9 s on computation only, automatic differenti-
ation is about 11.5� faster.

This is due to the fact that some expensive calculations
(especially the ray-aiming and computation of the raymap)
are be done only once, and the derivatives calculated with-
out having to redo the ray-aiming twice for each degree of
freedom.

4.3 Functionalities

At the time of writing this article FORMIDABLE imple-
ments the following functionalities:

� Surfaces

– Conic/aspherical surfaces
– XY polynomials
– ZERNIKE polynomials
– NURBS
– Linear diffraction gratings

� Analysis

– 2D and 3D layout (discontinuities plotted on a 3D
layout)

– Transverse ray diagrams
– Spot diagrams
– Wavefront error maps
– Distortion maps
– NURBS curvature maps

Due to its nature (julia programming and available
source) it is comparatively very easy to implement new
functionalities.

FORMIDABLE [22] is available under the ESA Soft-
ware Community Licence [23] following registration.
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